Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.893
Filtrar
1.
PLoS One ; 19(3): e0300150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457438

RESUMO

During hypoxia accumulation of lactate may be a key factor in acidosis-induced tissue damage. Binding of hexokinase (HK) to the outer membrane of mitochondria may have a protective effect under these conditions. We have investigated the regulation of lactate metabolism by hexokinases (HKs), using HEK293 cells in which the endogenous hexokinases have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were also transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown HEK cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. Upon inhibition of the mitochondrial electron transfer chain by NaCN this effect was reversed as a rapid increase in lactate developed which was followed by a slow and sustained increase in the continued presence of the inhibitor. Incubation of the HKI/HKII double knockdown HEK cells with the inhibitor of the malic enzyme, ME1*, blocked the delayed accumulation of lactate evoked by NaCN. With replacement by overexpression of HKI or HKII the accumulation of intracellular lactate evoked by NaCN was prevented. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN) abolished the protective effect of HK expression, with NaCN causing again a sustained increase in lactate. The effect of HK was dependent on HK's catalytic activity and interaction with the mitochondrial outer membrane (MOM). Based on these data we propose that transformation of glucose into G6P by HK activates the pentose phosphate pathway which increases the production of NADPH, which then blocks the activity of the malic enzyme to transform malate into pyruvate and lactate.


Assuntos
Hexoquinase , Ácido Láctico , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Ácido Láctico/metabolismo , Células HEK293 , Mitocôndrias/metabolismo , Piruvatos/metabolismo
2.
ACS Infect Dis ; 10(4): 1312-1326, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38513073

RESUMO

New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.


Assuntos
Acetaldeído/análogos & derivados , Bactérias , Escherichia coli , Transferases , Antibacterianos/química , Piruvatos/metabolismo
3.
J Physiol ; 602(7): 1313-1340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513062

RESUMO

High-intensity exercise stimulates glycolysis, subsequently leading to elevated lactate production within skeletal muscle. While lactate produced within the muscle is predominantly released into the circulation via the monocarboxylate transporter 4 (MCT4), recent research underscores lactate's function as an intercellular and intertissue signalling molecule. However, its specific intracellular roles within muscle cells remains less defined. In this study, our objective was to elucidate the effects of increased intramuscular lactate accumulation on skeletal muscle adaptation to training. To achieve this, we developed MCT4 knockout mice and confirmed that a lack of MCT4 indeed results in pronounced lactate accumulation in skeletal muscle during high-intensity exercise. A key finding was the significant enhancement in endurance exercise capacity at high intensities when MCT4 deficiency was paired with high-intensity interval training (HIIT). Furthermore, metabolic adaptations supportive of this enhanced exercise capacity were evident with the combination of MCT4 deficiency and HIIT. Specifically, we observed a substantial uptick in the activity of glycolytic enzymes, notably hexokinase, glycogen phosphorylase and pyruvate kinase. The mitochondria also exhibited heightened pyruvate oxidation capabilities, as evidenced by an increase in oxygen consumption when pyruvate served as the substrate. This mitochondrial adaptation was further substantiated by elevated pyruvate dehydrogenase activity, increased activity of isocitrate dehydrogenase - the rate-limiting enzyme in the TCA cycle - and enhanced function of cytochrome c oxidase, pivotal to the electron transport chain. Our findings provide new insights into the physiological consequences of lactate accumulation in skeletal muscle during high-intensity exercises, deepening our grasp of the molecular intricacies underpinning exercise adaptation. KEY POINTS: We pioneered a unique line of monocarboxylate transporter 4 (MCT4) knockout mice specifically tailored to the ICR strain, an optimal background for high-intensity exercise studies. A deficiency in MCT4 exacerbates the accumulation of lactate in skeletal muscle during high-intensity exercise. Pairing MCT4 deficiency with high-intensity interval training (HIIT) results in a synergistic boost in high-intensity exercise capacity, observable both at the organismal level (via a treadmill running test) and at the muscle tissue level (through an ex vivo muscle contractile function test). Coordinating MCT4 deficiency with HIIT enhances both the glycolytic enzyme activities and mitochondrial capacity to oxidize pyruvate.


Assuntos
Treinamento Intervalado de Alta Intensidade , Transportadores de Ácidos Monocarboxílicos , Músculo Esquelético , Animais , Camundongos , Lactatos , Camundongos Endogâmicos ICR , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Piruvatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo
4.
J Am Heart Assoc ; 13(7): e033676, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38533937

RESUMO

BACKGROUND: Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS: To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS: Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.


Assuntos
Miócitos Cardíacos , Fosfofrutoquinase-2 , Animais , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Proteômica , Piruvatos/metabolismo
5.
Arch Microbiol ; 206(4): 153, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472387

RESUMO

3-Bromopyruvate (3BP), known for its potent anticancer properties, also exhibits remarkable efficacy against the pathogenic fungus Cryptococcus neoformans. So far it has been proven that the main fungicidal activity of 3BP is based on ATP depletion and a reduction of intracellular level of glutathione. The presented study includes a broad range of methods to further investigate the mechanistic effects of 3BP on C. neoformans cells. The use of flow cytometry allowed a thorough examination of their survival during 3BP treatment, while observations using electron microscopy made it possible to note the changes in cellular morphology. Utilizing ruthenium red, the study suggests a mitochondrial pathway may initiate programmed cell death in response to 3BP. Analysis of free radical generation and gene expression changes supports this hypothesis. These findings enhance comprehension of 3BP's mechanisms in fungal cells, paving the way for its potential application as a therapeutic agent against cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Cryptococcus neoformans/metabolismo , Piruvatos/metabolismo , Piruvatos/farmacologia , Piruvatos/uso terapêutico , Criptococose/tratamento farmacológico , Apoptose
6.
Methods Mol Biol ; 2760: 77-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468083

RESUMO

We show the engineering of prokaryotic-transcription-factor-based biosensing devices in Saccharomyces cerevisiae cells for an in vitro detection of common hydrocarbon intermediates/metabolites and potentially, for monitoring of the metabolism of carbon compounds. We employed the bacterial receptor proteins MarR (multiple antibiotic-resistant receptor) and PdhR (pyruvate dehydrogenase-complex regulator) to detect benzoate/salicylate and pyruvate, respectively. The yeast-enhanced green fluorescence protein (yEGFP) was adopted as an output signal. Indeed, the engineered yeast strains showed a strong and dynamic fluorescent output signal in the presence of the input chemicals ranging from 2 fM up to 5 mM. In addition, we describe how to make use of these strains to assess over time the metabolism of complex hydrocarbon compounds due to the hydrocarbon-degrading fungus Trichoderma harzianum (KY488463).


Assuntos
Saccharomyces cerevisiae , Fatores de Transcrição , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , DNA/metabolismo , Proteínas de Bactérias/metabolismo , Piruvatos/metabolismo
7.
Science ; 383(6690): 1484-1492, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547260

RESUMO

Cellular purines, particularly adenosine 5'-triphosphate (ATP), fuel many metabolic reactions, but less is known about the direct effects of pyrimidines on cellular metabolism. We found that pyrimidines, but not purines, maintain pyruvate oxidation and the tricarboxylic citric acid (TCA) cycle by regulating pyruvate dehydrogenase (PDH) activity. PDH activity requires sufficient substrates and cofactors, including thiamine pyrophosphate (TPP). Depletion of cellular pyrimidines decreased TPP synthesis, a reaction carried out by TPP kinase 1 (TPK1), which reportedly uses ATP to phosphorylate thiamine (vitamin B1). We found that uridine 5'-triphosphate (UTP) acts as the preferred substrate for TPK1, enabling cellular TPP synthesis, PDH activity, TCA-cycle activity, lipogenesis, and adipocyte differentiation. Thus, UTP is required for vitamin B1 utilization to maintain pyruvate oxidation and lipogenesis.


Assuntos
Ciclo do Ácido Cítrico , Lipogênese , Pirimidinas , Complexo Piruvato Desidrogenase , Piruvatos , Trifosfato de Adenosina/metabolismo , Pirimidinas/metabolismo , Piruvatos/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo , Uridina Trifosfato/metabolismo , Oxirredução , Proteínas Quinases/metabolismo , Humanos , Células HeLa , Complexo Piruvato Desidrogenase/metabolismo
8.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422159

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
9.
Plant Physiol Biochem ; 207: 108417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354527

RESUMO

Strawberry is one of the most popular fruits in the world, because their high fruit quality, especially with respect to the combination of aroma, flavor, color, and nutritional compounds. Pyruvate decarboxylase (PDC) is the first of two enzymes specifically required for ethanolic fermentation and catalyzes the decarboxylation of pyruvate to yield acetaldehyde and CO2. The ethanol, an important alcohol which acts as a precursor for the ester and other alcohols formation in strawberry, is produced by the PDC. The objective was found all different PDCs genes present in the strawberry genome and investigate PDC gene expression and ligand-protein interactions in strawberry fruit. Volatile organic compounds were evaluated during the development of the fruit. After this, eight FaPDC were identified with four genes that increase the relative expression during fruit ripening process. Molecular dynamics simulations were performed to analyze the behavior of Pyr and TPP ligands within the catalytic and regulatory sites of the PDC proteins. Results indicated that energy-restrained simulations exhibited minor fluctuations in ligand-protein interactions, while unrestrained simulations revealed crucial insights into ligand affinity. TPP consistently displayed strong interactions with the catalytic site, emphasizing its pivotal role in enzymatic activity. However, FaPDC6 and FaPDC9 exhibited decreased pyruvate affinity initially, suggesting unique binding characteristics requiring further investigation. Finally, the present study contributes significantly to understanding PDC gene expression and the intricate molecular dynamics underlying strawberry fruit ripening, shedding light on potential targets for further research in this critical biological pathway.


Assuntos
Fragaria , Piruvato Descarboxilase , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/metabolismo , Ligantes , Proteínas de Plantas/metabolismo , Etanol/metabolismo , Piruvatos/metabolismo , Regulação da Expressão Gênica de Plantas
10.
J Virol ; 98(3): e0175123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319105

RESUMO

Viruses exploit the host cell's energy metabolism system to support their replication. Mitochondria, known as the powerhouse of the cell, play a critical role in regulating cell survival and virus replication. Our prior research indicated that the classical swine fever virus (CSFV) alters mitochondrial dynamics and triggers glycolytic metabolic reprogramming. However, the role and mechanism of PKM2, a key regulatory enzyme of glycolytic metabolism, in CSFV replication remain unclear. In this study, we discovered that CSFV enhances PKM2 expression and utilizes PKM2 to inhibit pyruvate production. Using an affinity purification coupled mass spectrometry system, we successfully identified PKM as a novel interaction partner of the CSFV non-structural protein NS4A. Furthermore, we validated the interaction between PKM2 and both CSFV NS4A and NS5A through co-immunoprecipitation and confocal analysis. PKM2 was found to promote the expression of both NS4A and NS5A. Moreover, we observed that PKM2 induces mitophagy by activating the AMPK-mTOR signaling pathway, thereby facilitating CSFV proliferation. In summary, our data reveal a novel mechanism whereby PKM2, a metabolic enzyme, promotes CSFV proliferation by inducing mitophagy. These findings offer a new avenue for developing antiviral strategies. IMPORTANCE: Viruses rely on the host cell's material-energy metabolic system for replication, inducing host metabolic disorders and subsequent immunosuppression-a major contributor to persistent viral infections. Classical swine fever virus (CSFV) is no exception. Classical swine fever is a severe acute infectious disease caused by CSFV, resulting in significant economic losses to the global pig industry. While the role of the metabolic enzyme PKM2 (pyruvate dehydrogenase) in the glycolytic pathway of tumor cells has been extensively studied, its involvement in viral infection remains relatively unknown. Our data unveil a new mechanism by which the metabolic enzyme PKM2 mediates CSFV infection, offering novel avenues for the development of antiviral strategies.


Assuntos
Proteínas Quinases Ativadas por AMP , Vírus da Febre Suína Clássica , Mitofagia , Piruvato Quinase , Serina-Treonina Quinases TOR , Proteínas não Estruturais Virais , Replicação Viral , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antivirais , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/crescimento & desenvolvimento , Vírus da Febre Suína Clássica/fisiologia , Desenho de Fármacos , Glicólise , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Piruvatos/metabolismo , Transdução de Sinais , Suínos/metabolismo , Suínos/virologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
11.
Planta ; 259(3): 66, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332379

RESUMO

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Assuntos
Ácido Abscísico , Robinia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidia , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Piruvatos/metabolismo , Raízes de Plantas/metabolismo
12.
Neuron ; 112(6): 959-971.e8, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38266644

RESUMO

For decades, the expression of immediate early genes (IEGs) such as FOS has been the most widely used molecular marker representing neuronal activation. However, to date, there is no equivalent surrogate available for the decrease of neuronal activity. Here, we developed an optogenetic-based biochemical screen in which population neural activities can be controlled by light with single action potential precision, followed by unbiased phosphoproteomic profiling. We identified that the phosphorylation of pyruvate dehydrogenase (pPDH) inversely correlated with the intensity of action potential firing in primary neurons. In in vivo mouse models, monoclonal antibody-based pPDH immunostaining detected activity decreases across the brain, which were induced by a wide range of factors including general anesthesia, chemogenetic inhibition, sensory experiences, and natural behaviors. Thus, as an inverse activity marker (IAM) in vivo, pPDH can be used together with IEGs or other cell-type markers to profile and identify bi-directional neural dynamics induced by experiences or behaviors.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Fosforilação , Encéfalo/metabolismo , Neurônios/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Piruvatos/metabolismo , Genes Precoces
13.
Magn Reson Med ; 91(5): 2114-2125, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270193

RESUMO

PURPOSE: To use the hepatocyte-specific gadolinium-based contrast agent gadoxetate combined with hyperpolarized (HP) [1-13 C]pyruvate MRI to selectively suppress metabolic signals from normal hepatocytes while preserving the signals arising from tumors. METHODS: Simulations were performed to determine the expected changes in HP 13 C MR signal in liver and tumor under the influence of gadoxetate. CC531 colon cancer cells were implanted into the livers of five Wag/Rij rats. Liver and tumor metabolism were imaged at 3 T using HP [1-13 C] pyruvate chemical shift imaging before and 15 min after injection of gadoxetate. Area under the curve for pyruvate and lactate were measured from voxels containing at least 75% of normal-appearing liver or tumor. RESULTS: Numerical simulations predicted a 36% decrease in lactate-to-pyruvate (L/P) ratio in liver and 16% decrease in tumor. In vivo, baseline L/P ratio was 0.44 ± 0.25 in tumors versus 0.21 ± 0.08 in liver (p = 0.09). Following administration of gadoxetate, mean L/P ratio decreased by an average of 0.11 ± 0.06 (p < 0.01) in normal-appearing liver. In tumors, mean L/P ratio post-gadoxetate did not show a statistically significant change from baseline. Compared to baseline levels, the relative decrease in L/P ratio was significantly greater in liver than in tumors (-0.52 ± 0.16 vs. -0.19 ± 0.25, p < 0.05). CONCLUSIONS: The intracellular hepatobiliary contrast agent showed a greater effect suppressing HP 13 C MRI metabolic signals (through T1 shortening) in normal-appearing liver when compared to tumors. The combined use of HP MRI with selective gadolinium contrast agents may allow more selective imaging in HP 13 C MRI.


Assuntos
Meios de Contraste , Neoplasias Hepáticas , Ratos , Animais , Meios de Contraste/farmacologia , Gadolínio/farmacologia , Hepatócitos/metabolismo , Gadolínio DTPA , Fígado/metabolismo , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Imageamento por Ressonância Magnética/métodos , Piruvatos/metabolismo , Lactatos/metabolismo
14.
Phytomedicine ; 125: 155269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237510

RESUMO

BACKGROUND: Energy deficiency is the characteristic of chemotherapy-induced cachexia (CIC) which is manifested by muscle wasting. glycolysis, tricarboxylic acid (TCA) cycle, and lipid metabolism are central to muscle bioenergy production, which is vulnerable to chemotherapy during cancer treatment. Recent investigations have spotlighted the potential of Shenqi Fuzheng injection (SQ), a Chinese proprietary medicine comprising Radix Codonopsis and Radix Astragali, in alleviating CIC. However, the specific effects of SQ on muscle energy metabolism remains less explored. PURPOSE AND METHODS: Here, we integrated transcriptomics, spatial metabolomics, gas chromatography-mass spectrometry targeted quantitative analysis, and transmission electron microscopy techniques, combined with Seahorse live-cell metabolic analysis to reveal the changes in genes and pathways related to energy metabolism in the CIC model and SQ's protective effects at molecular and functional levels. RESULTS: Our data showed that chemotherapeutic agents caused glycolysis imbalance, which further leads to metabolic derangements of TCA cycle intermediates. SQ maintained glycolysis balance by facilitating pyruvate fluxing to mitochondria for more efficient bioenergy production, which involved a dual effect on promoting functions of mitochondrial pyruvate dehydrogenase complexes and inhibiting lactate dehydrogenase for lactate production. As a result of the sustained pyruvate level achieved by SQ administration, glycolysis balance was maintained, which further led to the preservation of mitochondrial integrity and function of electron transport chain, thereby, ensuring the normal operation of the TCA cycle and the proper synthesis of adenosine triphosphate (ATP). The above results were further validated using the Seahorse live-cell assay. CONCLUSION: In conclusion, our study highlights SQ as a promising strategy for CIC management, emphasizing its ability to harmonize the homeostasis of the muscle bioenergetic profile. Beyond its therapeutic implications, this study also offers a novel perspective for the development of innovative treatments in the realm of herbal medicine.


Assuntos
Antineoplásicos , Caquexia , Medicamentos de Ervas Chinesas , Camundongos , Animais , Caquexia/induzido quimicamente , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Metabolismo Energético , Músculo Esquelético/metabolismo , Piruvatos/metabolismo
15.
Nat Commun ; 15(1): 163, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167945

RESUMO

Monocarboxylate transporter 1 (MCT1) exhibits essential roles in cellular metabolism and energy supply. Although MCT1 is highly expressed in activated B cells, it is not clear how MCT1-governed monocarboxylates transportation is functionally coupled to antibody production during the glucose metabolism. Here, we report that B cell-lineage deficiency of MCT1 significantly influences the class-switch recombination (CSR), rendering impaired IgG antibody responses in Mct1f/fMb1Cre mice after immunization. Metabolic flux reveals that glucose metabolism is significantly reprogrammed from glycolysis to oxidative phosphorylation in Mct1-deficient B cells upon activation. Consistently, activation-induced cytidine deaminase (AID), is severely suppressed in Mct1-deficient B cells due to the decreased level of pyruvate metabolite. Mechanistically, MCT1 is required to maintain the optimal concentration of pyruvate to secure the sufficient acetylation of H3K27 for the elevated transcription of AID in activated B cells. Clinically, we found that MCT1 expression levels are significantly upregulated in systemic lupus erythematosus patients, and Mct1 deficiency can alleviate the symptoms of bm12-induced murine lupus model. Collectively, these results demonstrate that MCT1-mediated pyruvate metabolism is required for IgG antibody CSR through an epigenetic dependent AID transcription, revealing MCT1 as a potential target for vaccine development and SLE disease treatment.


Assuntos
Linfócitos B , Switching de Imunoglobulina , Animais , Humanos , Camundongos , Acetilação , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Glucose/metabolismo , Isotipos de Imunoglobulinas , Piruvatos/metabolismo
16.
Andrology ; 12(2): 459-471, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37300872

RESUMO

BACKGROUND: Equine spermatozoa appear to differ from spermatozoa of other species in using oxidative phosphorylation preferentially over glycolysis. However, there is little information regarding effects of different energy sources on measured parameters in equine spermatozoa. OBJECTIVE: To determine the effect of three individual energy substrates, glucose, pyruvate, and lactate, on motion characteristics, membrane integrity, and acrosomal status of stallion spermatozoa. MATERIALS AND METHODS: Freshly ejaculated stallion spermatozoa were incubated with combinations of glucose (5 mm), pyruvate (10 mm), and lactate (10 mm) for 0.5 to 4 h. Response to calcium ionophore A23187 (5 µm) was used to evaluate capacitation status. Motility was evaluated using computer-assisted sperm analysis, and plasma membrane and acrosomal integrity were evaluated by flow cytometry. RESULTS: Incubation with lactate alone for 2 h increased acrosomal sensitivity to A23187. Notably, incubation with lactate alone for 4 h induced a significant spontaneous increase in acrosome-reacted, membrane-intact (viable) spermatozoa, to approximately 50% of the live population, whereas no increase was seen with incubation in glucose or pyruvate alone. This acrosomal effect was observed in spermatozoa incubated at physiological pH as well as under alkaline conditions (medium pH approximately 8.5). Sperm motility declined concomitantly with the increase in acrosome-reacted spermatozoa. Sperm motility was significantly higher in pyruvate-only medium than in glucose or lactate. The addition of pyruvate to lactate-containing medium increased sperm motility but reduced the proportion of live acrosome-reacted spermatozoa in a dose-dependent fashion. DISCUSSION: This is the first study to demonstrate that incubation with a specific energy substrate, lactate, is associated with spontaneous acrosome reaction in spermatozoa. The proportion of live, acrosome-reacted spermatozoa obtained is among the highest reported for equine spermatozoa. CONCLUSION: These findings highlight the delicate control of key sperm functions, and may serve as a basis to increase our understanding of stallion sperm physiology.


Assuntos
Reação Acrossômica , Ácido Láctico , Masculino , Animais , Cavalos , Reação Acrossômica/fisiologia , Ácido Láctico/metabolismo , Calcimicina/farmacologia , Sêmen , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Acrossomo , Piruvatos/metabolismo , Piruvatos/farmacologia , Glucose/metabolismo , Capacitação Espermática
17.
Metab Eng ; 81: 167-181, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040111

RESUMO

Using captured CO2 and C1-feedstocks like formate and methanol derived from electrochemical activation of CO2 are key solutions for transforming industrial processes towards a circular carbon economy. Engineering formate and CO2-based growth in the biotechnologically relevant yeast Saccharomyces cerevisiae could boost the emergence of a formate-mediated circular bio-economy. This study adopts a growth-coupled selection scheme for modular implementation of the Reductive Glycine Pathway (RGP) and subsequent Adaptive Laboratory Evolution (ALE) to enable formate and CO2 assimilation for biomass formation in yeast. We first constructed a serine biosensor strain and then implemented the serine synthesis module of the RGP into yeast, establishing glycine and serine synthesis from formate and CO2. ALE improved the RGP-dependent growth by 8-fold. 13C-labeling experiments reveal glycine, serine, and pyruvate synthesis via the RGP, demonstrating the complete pathway activity. Further, we re-established formate and CO2-dependent growth in non-evolved biosensor strains via reverse-engineering a mutation in GDH1 identified from ALE. This mutation led to significantly more 13C-formate assimilation than in WT without any selection or overexpression of the RGP. Overall, we demonstrated the activity of the complete RGP, showing evidence for carbon transfer from formate to pyruvate coupled with CO2 assimilation.


Assuntos
Dióxido de Carbono , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dióxido de Carbono/metabolismo , Glicina/genética , Glicina/metabolismo , Carbono/metabolismo , Formiatos/metabolismo , Serina/metabolismo , Piruvatos/metabolismo
18.
J Exp Bot ; 75(1): 438-453, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721748

RESUMO

Cadmium (Cd) is highly toxic to plants, but the targets and modes of toxicity remain unclear. We isolated a Cd-hypersensitive mutant of Arabidopsis thaliana, Cd-induced short root 2 (cdsr2), in the background of the phytochelatin synthase-defective mutant cad1-3. Both cdsr2 and cdsr2 cad1-3 displayed shorter roots and were more sensitive to Cd than their respective wild type. Using genomic resequencing and complementation, IAR4 was identified as the causal gene, which encodes a putative mitochondrial pyruvate dehydrogenase E1α subunit. cdsr2 showed decreased pyruvate dehydrogenase activity and NADH content, but markedly increased concentrations of pyruvate and alanine in roots. Both Cd stress and IAR4 mutation decreased auxin level in the root tips, and the effect was additive. A higher growth temperature rescued the phenotypes in cdsr2. Exogenous alanine inhibited root growth and decreased auxin level in the wild type. Cadmium stress suppressed the expression of genes involved in auxin biosynthesis, hydrolysis of auxin-conjugates and auxin polar transport. Our results suggest that auxin homeostasis is a key target of Cd toxicity, which is aggravated by IAR4 mutation due to decreased pyruvate dehydrogenase activity. Decreased auxin level in cdsr2 is likely caused by increased auxin-alanine conjugation and decreased energy status in roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cádmio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase , Mutação , Ácidos Indolacéticos/metabolismo , Alanina , Piruvatos/metabolismo , Piruvatos/farmacologia , Oxirredutases/metabolismo , Raízes de Plantas/metabolismo
19.
Traffic ; 25(1): e12926, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084815

RESUMO

In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD+ on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.


Assuntos
Glicólise , NAD , NAD/metabolismo , Glicólise/fisiologia , Axônios/metabolismo , Trifosfato de Adenosina/metabolismo , Piruvatos/metabolismo
20.
Bioprocess Biosyst Eng ; 47(2): 211-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153563

RESUMO

Menaquinone-7 (MK-7) is an important class of vitamin K2 that is essential in human health and can prevent osteoporosis and cardiovascular disease. However, due to the complex synthesis pathway, the synthesis efficiency is low. The main objective of this study was to explore the effect of enhanced supply of precursors in Bacillus natto. Three precursors of pyruvate, shikimic acid, and sodium glutamate were chosen to investigate the effect of enhanced supply of precursors on MK-7 synthesis. Then, the optimal concentrations, different combinations, and different adding times were systematically studied, respectively. Results showed that the combination of shikimic acid and sodium glutamate could boost MK-7 production by 2 times, reaching 50 mg/L of MK-7 titer and 0.52 mg/(L·h) of MK-7 productivity. Furthermore, adding shikimic acid and sodium glutamate initially and feeding pyruvate at 48 h and 72 h increased MK-7 production to 58 mg/L. At the same time, the expression of the three related genes was also significantly upregulated. Subsequently, a new fermentation strategy combining the precursors enhancement and product secretion was proposed to enhance MK-7 yield and MK-7 productivity to 63 mg/L and 0.45 mg/(L·h). This study proposed a new fermentation regulation strategy for the enhancement of vitamin K2 biosynthesis.


Assuntos
Ácido Chiquímico , Glutamato de Sódio , Humanos , Vitamina K 2/metabolismo , Ácido Chiquímico/metabolismo , Glutamato de Sódio/metabolismo , Fermentação , Bacillus subtilis/genética , Piruvatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...